Detailed Experimental Setup

Table 5: Statistics for datasets used for training and fine-
tuning.

Usage Dataset Hours
Train Audioset (Gemmeke et al. 2017)  ~ 2000
Train VGGSound (Chen et al. 2020) 72
Adaptation AIST++ (Li et al. 2021) 5.2
Adaptation Landscape (Lee et al. 2022b) 2.7
Adaptation MV100K (Su et al. 2024b) 100

As shown in Table 5, we present the statistics for datasets
used for training and fine-tuning. Specifically,

* VGGSound dataset consists of videos uploaded to
YouTube with audio-visual correspondence, containing
~200k 10-second videos. We follow the original VG-
GSound train/test splits.

* AudioSet comprises 2.1M videos with 527 sound
classes, with most of the videos labeled as music and
speech.

» Landscape dataset is a high-fidelity audio-video dataset
with nature scenes. The total duration is about 2.7 hours
of 300K frames.

e AIST++ is a subset of AIST dataset (Tsuchida et al.
2019), which contains street dance videos with 60
copyright-cleared dancing songs. The dataset includes
1020 video clips with a total duration of 5.2 hours of
about 560K frames.

e MV100K is filtered from a publicly available video
dataset (Abu-El-Haija et al. 2016) to videos with the
label music videos, and we use 100 hours of data for
fine-tuning.

Contrastive Audio-Video Pre-training (CAVP)

Denote the training data as D = {(X?, Xz“)}iiv Let faudio
be the audio encoder and fy;qe, be the video encoder, which
is a learnable embedding function. The model is trained with
the contrastive learning paradigm between the audio embed-
dings E and video embeddings E; in pair:

E;‘l - MLPaudio (faudio (Xla)) 7E;) = MLPvideo (fvideo (sz))

(%)
Recent multi-modal generative models (Podell et al. 2023;
Girdhar et al. 2023) have collected large paired data and
trained models to embed multi-modal in a joint space us-
ing contrastive learning, exhibiting impressive zero-shot
performance: CLIP (Radford et al. 2021) is pre-trained
on image-text data, contrastive language-audio pretraining
(CLAP) (Elizalde et al. 2022) brings audio and text descrip-
tions into a joint space.
We define the per-sample pair semantic contrast ob-
jective, where 7 is a learnable temperature parameter

for scaling the loss, and N is the number of data: L =
exp(E{-E?/T) exp(E;-E{/T)

1 N
2N Zi:l log Z;\Izl cxp(E;LE;/'r) + log Z;\Izl cxp(E;’-E;/T))

Following (Radford et al. 2021; Elizalde et al. 2023), two
logarithmic terms consider either audio-to-video logits or
video-to-audio logits. After training, we evaluate the model
in downstream audio-video and video-audio retrieval tasks,
where we compute the similarity between the audio and
video embeddings. Take audio-video retrieval as an exam-
ple, top-N descriptions are computed by picking the descrip-
tions corresponding to the top N values in similarity.
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Figure 4: The contrastive audio-video pretraining process.

As can be seen in Table 6, the constrastive audio-video
pretraining model (CAVP) achieves high retrieval accuracy.
It indicates the outperformed capabilities in assessing the co-
herence of the audio about the video instruction. After train-
ing the CAVP model, we use it to evaluate video-guided au-
dio generation models by calculating 1) CAVP video-audio
similarity — measuring alignment between video and gener-
ated audio, and 2) CAAP audio-audio similarity - measuring
the change between reference and generated audio.

Model Configurations

We list the model hyper-parameters of VisualAudio in Ta-
ble 7.

Transformer condition mechanism

In Section , the multi-head cross-attention layers are at-
tached to handle the challenges of video-synchronized au-
dio generation, which is effective for learning various input
modalities. We also explore two other methods (e.g., self-
attention or concat) to integrate temporal local information
for ablation and illustrate them in Figure 5. Ablation results
in Table 4 demonstrate the effiectiveness of cross-attention
mechanism to inject video condition.

VAE

The audio encoder E takes mel-spectrogram x, as input
and outputs compressed latent z = E(z,). The audio de-
coder D reconstructs the mel-spectrogram signals z, =
D(z) from the compressed representation z. Different from
other modalities, we use an audio VAE with 1D-convolution
to improve the model’s capacity for variable-length au-
dio. VAE solves the problem of excessive smoothing in
mel-spectrogram reconstruction through adversarial training
with a discriminator.




Table 6: Retrieval accuracy using a contrastive audio-video pretraining model.

Video — Audio

Audio — Video

R@1 R@5 R@I0 mAP | R@l R@5 R@10 mAP
AIST++ 0.15 0.80 0.95 0.39 0.15 0.45 0.65 0.29
Landscape | 0.08 0.25 0.36 0.14 0.08 0.22 0.30 0.14
MV100K 0.11 0.41 0.59 0.22 0.05 0.52 0.76 0.21
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Figure 5: Condition mechanism. Left: with cross-attention module to inject visual information. Right: with the self-attention
module, concatenating the video/audio latents along the channel/time dimension before feeding the input into the transformers.

The training objective is to minimize the weighted sum of
reconstruction loss, GAN loss, and KL penalty loss. To this
end, VisualAudio takes advantage of the VAE to predict self-
supervised representations instead of waveforms. It largely
alleviates the challenges of modeling long continuous data
and guarantees high-level semantic understanding.

Vocoder

We train a BigVGAN (Lee et al. 2022a) vocoder from
scratch for the spectrogram to waveform generation. The
synthesizer includes the generator and multi-resolution dis-
criminator (MRD). The generator is built from a set of look-
up tables (LUT) that embed the discrete representation and
a series of blocks composed of transposed convolution and
a residual block with dilated layers. The transposed convo-
lutions upsample the encoded representation to match the
input sample rate.

Evaluation

To probe audio quality, we conduct the MOS-Q (mean opin-
ion score) tests and explicitly instruct the raters to “focus on
examining the audio quality and naturalness.”. The testers
present and rate the samples, and each tester is asked to eval-
uate the subjective naturalness on a 20-100 Likert scale.

To probe video-audio alignment, human raters are shown
an audio and a video and asked “Does the audio align with

video faithfully?”. They must respond with “completely”,
“mostly”, or “somewhat” on a 20-100 Likert scale to score
MOS-E.

Our subjective evaluation tests are crowd-sourced and
conducted via Amazon Mechanical Turk. These ratings are
obtained independently for model samples and reference au-
dio. The screenshots of instructions for testers have been
shown in Figure 6. We paid $8 to participants hourly and
totally spent about $600 on participant compensation. A
small subset of audio samples used in the test is available
at https://visual-audio-demo.github.io/.

More Visualization

In this section, we put more visualizations of video-to-audio
generation results.



Table 7: Hyperparameters of VisualAudio. We use T and F to denote the time and frequency moe layers respectively.

Hyperparameter VisualAudio
Transformer Layer 8T+4F
M Transformer Embed Dim 768
Transformer Attention Headers 12
Number of Parameters 160 M
Transformer Layer 12T+12F
L Transformer Embed Dim 1024
Transformer Attention Headers 16
Number of Parameters 520 M
Transformer Layer 16T+12F
XL Transformer Embed Dim 1152
Transformer Attention Headers 16
Number of Parameters 750 M
Upsample Rates [5,4,2,2,2,2]
. Hop Size 320
BigVGAN Vocoder Upsample Kernel Sizes [9,8,4,4,4,4]
Number of Parameters 121.6M

How natural is this audio recording? Please focus on examining the audio quality and naturainess (noise, timbre, sound clarity and high-frequency detals).

Testing audio:
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(a) Screenshot of MOS-Q evaluation.

Select an option
Excellent - Completely natural audio - 100 1
Good - Mostly natural audio - 80 2
Fair - Equally natural and unnatural audio - 60
Poor - Mostly unnatural audio - 40 4

Bad - Completely unnatural audio - 20 5

Does the audio content match the videa content faithfully? Please focus on examining the audio-video similarity, and ignore audio quality and naturainess (noise, sound clarity).

Video content:

Testing audio:
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(b) Screenshot of MOS-F evaluation.

Figure 6: Subjective evaluation.

Select an option
Excellent - Completely faithful - 100 1

Good - Mostly faithful - 80 2
Fair - Equally faithful and inconsistent - 80 2
Poor - Mostly inconsistent - 40 4
Bad - Completely inconsistent - 20 5
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Figure 7: The visualization of cross-attention maps in different denoising timesteps ¢ € [0, 1], where each value is the average
of attention from this audio token to all video input.
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(a) Sample 1.

Figure 8: Visualizations of video-guided audio transfer.



(a) Sample 1.

(b) Sample 2.

Figure 9: Visualizations of video-guided audio interpolation .
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(a) Sample 1 (Landscape dataset).
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(b) Sample 2 (AIST++ dataset).
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(c) Sample 3 (MV100K dataset).

Figure 10: Visualizations of video-guided audio generation.



